256x^2+81x^2=750^2

Simple and best practice solution for 256x^2+81x^2=750^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 256x^2+81x^2=750^2 equation:



256x^2+81x^2=750^2
We move all terms to the left:
256x^2+81x^2-(750^2)=0
We add all the numbers together, and all the variables
337x^2-562500=0
a = 337; b = 0; c = -562500;
Δ = b2-4ac
Δ = 02-4·337·(-562500)
Δ = 758250000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{758250000}=\sqrt{2250000*337}=\sqrt{2250000}*\sqrt{337}=1500\sqrt{337}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1500\sqrt{337}}{2*337}=\frac{0-1500\sqrt{337}}{674} =-\frac{1500\sqrt{337}}{674} =-\frac{750\sqrt{337}}{337} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1500\sqrt{337}}{2*337}=\frac{0+1500\sqrt{337}}{674} =\frac{1500\sqrt{337}}{674} =\frac{750\sqrt{337}}{337} $

See similar equations:

| x^2/3-2^1/3-15=0 | | -h/4=-12 | | x+.60x+.14x+.03x=59118 | | 1.3j=1.69 | | 1620=(x-2)•180 | | (-4x)=0 | | y−670=309 | | 9-3w=30 | | x^2-3x-15+56=0 | | 7.2=m/6 | | 7m+3m+8=88 | | 9=k/3-4 | | 51=-3k | | (2s+25)+(s+14)=180 | | 3-3x+3x=3x-21 | | 3(7x+10=72 | | 2s+25=s+14 | | 2(5x+4)-11=4x=3(2X-1) | | 4=z−1 | | 3y-13=14y= | | v−20=19 | | (10p+98)+(13p+13)=180 | | j+59=61 | | |-9x-5|=22 | | 1/5x=6=-54 | | -36=x2 | | 13p+13=360 | | 0=8t^2-25t-18 | | |x-2.5|=6 | | 2=b/4+-12 | | n−6=41 | | y/4-2-1=1 |

Equations solver categories